9 research outputs found

    Keep Your Eyes above the Ball: Investigation of Virtual Reality (VR) Assistive Gaming for Age-Related Macular Degeneration (AMD) Visual Training

    Get PDF
    Humans are beyond all visual beings since most of the outside information is gathered through the visual system. When the aging process starts, visual functional damages become more and more common and the risk of developing visual impairment is higher. Age-related macular degeneration (AMD) is one of the main afflictions that leads to severe damage to the optical system due to the aging process. The ones affected lose the ability to use the central part of vision, essential for accurate visual information processing. Even if less accurate, peripheral vision remains unaffected, hence medical experts have developed training procedures to train patients to use peripheral vision instead to navigate their environment and continue their daily lives. This type of training is called eccentric viewing. However, there are several shortcomings in current approaches, such as not being engaging or individualizable enough nor cost and time-effective. The main scope of this dissertation was to find out if more engaging and individualizable methods can be used for peripheral training of AMD patients. The current work used virtual reality (VR) gaming to deliver AMD training; the first time such an approach was used for eccentric viewing training. In combination with eye-tracking, real-time individualized assistance was also achieved. Thanks to an integrated eye-tracker in the headset, concentric gaze-contingent stimuli were used to redirect the eyes toward an eccentric location. The concentric feature allowed participants to choose freely and individually their peripheral focus point. One study investigated the feasibility a VR system for individualized visual training of ophthalmic patients, two studies investigated two types of peripheral stimuli (three spatial cues and two optical distortions) and the last study was a case study looking into the feasibility of such an approach for a patient with late AMD. Changes in gaze directionality were observed in all the last three studies for one specific spatial cue, a concentric ring. In accordance with the literature, the gaze was directed spontaneously toward the most effective peripheral position. The last study additionally proved gaming feasible for future testing of the elderly AMD population. The current work opened the road to more individualized and engaging interventions for eccentric viewing training for late AMD

    Assessing the relationship between subjective trust, confidence measurements, and mouse trajectory characteristics in an online task

    Full text link
    Trust is essential for our interactions with others but also with artificial intelligence (AI) based systems. To understand whether a user trusts an AI, researchers need reliable measurement tools. However, currently discussed markers mostly rely on expensive and invasive sensors, like electroencephalograms, which may cause discomfort. The analysis of mouse trajectory has been suggested as a convenient tool for trust assessment. However, the relationship between trust, confidence and mouse trajectory is not yet fully understood. To provide more insights into this relationship, we asked participants (n = 146) to rate whether several tweets were offensive while an AI suggested its assessment. Our results reveal which aspects of the mouse trajectory are affected by the users subjective trust and confidence ratings; yet they indicate that these measures might not explain sufficiently the variance to be used on their own. This work examines a potential low-cost trust assessment in AI systems.Comment: Submitted to CHI 2023 and rejecte

    Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye’s Usability

    No full text
    Background: A case study is proposed to empirically test and discuss the eye-tracking status-quo hardware capabilities and limitations of an off-the-shelf virtual reality (VR) headset with embedded eye-tracking for at-home ready-to-go online usability in ophthalmology applications. Methods: The eye-tracking status-quo data quality of the HTC Vive Pro Eye is investigated with novel testing specific to objective online VR perimetry. Testing was done across a wide visual field of the head-mounted-display’s (HMD) screen and in two different moving conditions. A new automatic and low-cost Raspberry Pi system is introduced for VR temporal precision testing for assessing the usability of the HTC Vive Pro Eye as an online assistance tool for visual loss. Results: The target position on the screen and head movement evidenced limitations of the eye-tracker capabilities as a perimetry assessment tool. Temporal precision testing showed the system’s latency of 58.1 milliseconds (ms), evidencing its good potential usage as a ready-to-go online assistance tool for visual loss. Conclusions: The test of the eye-tracking data quality provides novel analysis useful for testing upcoming VR headsets with embedded eye-tracking and opens discussion regarding expanding future introduction of these HMDs into patients’ homes for low-vision clinical usability

    Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye's Usability

    No full text
    Background: A case study is proposed to empirically test and discuss the eye-tracking status-quo hardware capabilities and limitations of an off-the-shelf virtual reality (VR) headset with embedded eye-tracking for at-home ready-to-go online usability in ophthalmology applications. Methods: The eye-tracking status-quo data quality of the HTC Vive Pro Eye is investigated with novel testing specific to objective online VR perimetry. Testing was done across a wide visual field of the head-mounted-display’s (HMD) screen and in two different moving conditions. A new automatic and low-cost Raspberry Pi system is introduced for VR temporal precision testing for assessing the usability of the HTC Vive Pro Eye as an online assistance tool for visual loss. Results: The target position on the screen and head movement evidenced limitations of the eye-tracker capabilities as a perimetry assessment tool. Temporal precision testing showed the system’s latency of 58.1 milliseconds (ms), evidencing its good potential usage as a ready-to-go online assistance tool for visual loss. Conclusions: The test of the eye-tracking data quality provides novel analysis useful for testing upcoming VR headsets with embedded eye-tracking and opens discussion regarding expanding future introduction of these HMDs into patients’ homes for low-vision clinical usability

    Target Maintenance in Gaming via Saliency Augmentation: An Early-Stage Scotoma Simulation Study Using Virtual Reality (VR)

    No full text
    This study addresses the importance of salience placement before or after scotoma development for an efficient target allocation in the visual field. Pre-allocation of attention is a mechanism known to induce a better gaze positioning towards the target. Three different conditions were tested: a simulated central scotoma, a salience augmentation surrounding the scotoma and a baseline condition without any simulation. All conditions were investigated within a virtual reality VR gaming environment. Participants were tested in two different orders, either the salient cue was applied together with the scotoma before being presented with the scotoma alone or the scotoma in the wild was presented before and, then, with the augmentation around it. Both groups showed a change in gaze behaviour when saliency was applied. However, in the second group, salient augmentation also induced changes in gaze behaviour for the scotoma condition without augmentation, gazing above and outside the scotoma following previous literature. These preliminary results indicate salience placement before developing an advanced stage of scotoma can induce effective and rapid training for efficient target maintenance during VR gaming. The study shows the potential of salience and VR gaming as therapy for early AMD patients

    Application of Spatial Cues and Optical Distortions as Augmentations during Virtual Reality (VR) Gaming: The Multifaceted Effects of Assistance for Eccentric Viewing Training

    No full text
    The present study investigates the effects of peripheral spatial cues and optically distorting augmentations over eccentric vision mechanisms in normally sighted participants with simulated scotoma. Five different augmentations were tested inside a virtual reality (VR)-gaming environment. Three were monocular spatial cues, and two were binocular optical distortions. Each was divided into three conditions: baseline with normal viewing, augmentation with one of the assistance methods positioned around the scotoma, and one with only the simulated central scotoma. The study found that the gaming scenario induced eccentric viewing for the cued augmentation groups, even when the peripheral assistance was removed, while for the optical distortions group, the eccentric behavior disappeared after the augmentation removal. Additionally, an upwards directionality of gaze relative to target during regular gaming was found. The bias was maintained and implemented during and after the cued augmentations but not after the distorted ones. The results suggest that monocular peripheral cues could be better candidates for implementing eccentric viewing training in patients. At the same time, it showed that optical distortions might disrupt such behavior. Such results are noteworthy since distortions such as zoom are known to help patients with macular degeneration see targets of interest

    Looking Through "Rose-Tinted" Glasses: The Influence of Tint on Visual Affective Processing

    Get PDF
    The use of color-tinted lenses can introduce profound effects into how we process visual information at the early to late stages. Besides mediating harsh lighting conditions, some evidence suggests that color-tinted lenses can influence how humans respond to emotional events. In this study, we systematically evaluated how color-tinted lenses modified our participants’ psychophysiological responses to emotion-inducing images. The participants passively viewed pleasant, neutral or unpleasant images from the International-Affective-Picture-System (IAPS), while wearing none, blue, red, yellow or green tinted-lenses that were controlled for luminance. Established neuroergonomic indices of arousal were measured on the autonomic level, namely Skin-Conductance-Response (SCR) and Heart-Rate-Variability (HRV), and on the cortical level, with EEG event-related potentials (ERP). Phasic SCR responses were significantly enhanced for unpleasant images and both pleasant and unpleasant images induced significantly larger ERP amplitudes of the Late-Positive-Potential (LPP), with pleasant images having the greatest impact. Interestingly, a significant main effect was found for tint. Similar to viewing pleasant images, red-tinted lenses induced the largest LPPs. Taken together, these findings suggest that the autonomic response to affective images is modulated at the cortical level of processing, congruent with the use of red-tinted lenses
    corecore